140 research outputs found

    Using the Drosophila melanogaster D17-c3 cell culture system to study cell motility

    Get PDF
    Cultured Drosophila melanogaster S2 and S2R + cell lines have become important tools for uncovering fundamental aspects of cell biology as well as for gene discovery. Despite their utility, these cell lines are nonmotile and cannot build polarized structures or cell-cell contacts. Here we outline a previously isolated, but uncharacterized, Drosophila cell line named Dm-D17-c3 (or D17). These cells spread and migrate in culture, form cell-cell junctions and are susceptible to RNA interference (RNAi). Using this protocol, we describe how investigators, upon receiving cells from the Bloomington stock center, can culture cells and prepare the necessary reagents to plate and image migrating D17 cells; they can then be used to examine intracellular dynamics or observe loss-of-function RNAi phenotypes using an in vitroscratch or wound healing assay. From first thawing frozen ampules of D17 cells, investigators can expect to begin assaying RNAi phenotypes in D17 cells within roughly 2–3 weeks

    Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools

    Get PDF
    Connective tissues—skeleton, dermis, pericytes, fascia—are a key cell source for regenerating the patterned skeleton during axolotl appendage regeneration. This complexity has made it difficult to identify the cells that regenerate skeletal tissue. Inability to identify these cells has impeded a mechanistic understanding of blastema formation. By tracing cells during digit tip regeneration using brainbow transgenic axolotls, we show that cells from each connective tissue compartment have distinct spatial and temporal profiles of proliferation, migration, and differentiation. Chondrocytes proliferate but do not migrate into the regenerate. In contrast, pericytes proliferate, then migrate into the blastema and give rise solely to pericytes. Periskeletal cells and fibroblasts contribute the bulk of digit blastema cells and acquire diverse fates according to successive waves of migration that choreograph their proximal-distal and tissue contributions. We further show that platelet-derived growth factor signaling is a potent inducer of fibroblast migration, which is required to form the blastema.Fil: Currie, Joshua D.. Technische Universität Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; AlemaniaFil: Kawaguchi, Akane. Technische Universität Dresden; AlemaniaFil: Traspas, Ricardo Moreno. Technische Universität Dresden; AlemaniaFil: Schuez, Maritta. Technische Universität Dresden; AlemaniaFil: Chara, Osvaldo. Technische Universität Dresden; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Tanaka, Elly M.. Technische Universität Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemani

    Quantifying pulsed laser induced damage to grapheme

    Get PDF
    As an emerging optical material, graphene’s ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp2-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm2, an order-of-magnitude lower than measured and theoretical ablation thresholds

    The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array

    Get PDF
    Structures of Drosophila Msps TOG4 and human ch-TOG TOG4 are presented. TOG4 departs from the other TOG structures and predicts novel α-tubulin engagement. Whereas TOG domains across the array have different tubulin-binding properties, cellular studies show that a fully functional TOG array is required for microtubule polymerase activity.XMAP215 family members are potent microtubule (MT) polymerases, with mutants displaying reduced MT growth rates and aberrant spindle morphologies. XMAP215 proteins contain arrayed tumor overexpressed gene (TOG) domains that bind tubulin. Whether these TOG domains are architecturally equivalent is unknown. Here we present crystal structures of TOG4 from Drosophila Msps and human ch-TOG. These TOG4 structures architecturally depart from the structures of TOG domains 1 and 2, revealing a conserved domain bend that predicts a novel engagement with α-tubulin. In vitro assays show differential tubulin-binding affinities across the TOG array, as well as differential effects on MT polymerization. We used Drosophila S2 cells depleted of endogenous Msps to assess the importance of individual TOG domains. Whereas a TOG1-4 array largely rescues MT polymerization rates, mutating tubulin-binding determinants in any single TOG domain dramatically reduces rescue activity. Our work highlights the structurally diverse yet positionally conserved TOG array that drives MT polymerization

    Left Ventricular Structure and Function in Elite Swimmers and Runners

    Get PDF
    Sport-specific differences in the left ventricle (LV) of land-based athletes have been observed; however, comparisons to water-based athletes are sparse. The purpose of this study was to examine differences in LV structure and function in elite swimmers and runners. Sixteen elite swimmers [23 (2) years, 81% male, 69% white] and 16 age, sex, and race matched elite runners participated in the study. All athletes underwent resting echocardiography and indices of LV dimension, global LV systolic and diastolic function, and LV mechanics were determined. All results are presented as swimmers vs. runners. Early diastolic function was lower in swimmers including peak early transmitral filling velocity [76 (13) vs. 87 (11) cm â‹… s-1, p = 0.02], mean mitral annular peak early velocity [16 (2) vs. 18 (2) cm â‹… s-1, p = 0.01], and the ratio of peak early to late transmitral filling velocity [2.68 (0.59) vs. 3.29 (0.72), p = 0.005]. The diastolic mechanics index of time to peak untwisting rate also occurred later in diastole in swimmers [12 (10)% diastole vs. 5 (4)% diastole, p = 0.01]. Cardiac output was larger in swimmers [5.8 (1.5) vs. 4.7 (1.2) L â‹… min-1, p = 0.04], which was attributed to their higher heart rates [56 (6) vs. 49 (6) bpm, p < 0.001] given stroke volumes were similar between groups. All other indices of LV systolic function and dimensions were similar between groups. Our findings suggest enhanced early diastolic function in elite runners relative to swimmers, which may be attributed to faster LV untwisting

    Expression Levels of a Kinesin-13 Microtubule Depolymerase Modulates the Effectiveness of Anti-Microtubule Agents

    Get PDF
    Chemotherapeutic drugs often target the microtubule cytoskeleton as a means to disrupt cancer cell mitosis and proliferation. Anti-microtubule drugs inhibit microtubule dynamics, thereby triggering apoptosis when dividing cells activate the mitotic checkpoint. Microtubule dynamics are regulated by microtubule-associated proteins (MAPs); however, we lack a comprehensive understanding about how anti-microtubule agents functionally interact with MAPs. In this report, we test the hypothesis that the cellular levels of microtubule depolymerases, in this case kinesin-13 s, modulate the effectiveness of the microtubule disrupting drug colchicine.We used a combination of RNA interference (RNAi), high-throughput microscopy, and time-lapse video microscopy in Drosophila S2 cells to identify a specific MAP, kinesin-like protein 10A (KLP10A), that contributes to the efficacy of the anti-microtubule drug colchicine. KLP10A is an essential microtubule depolymerase throughout the cell cycle. We find that depletion of KLP10A in S2 cells confers resistance to colchicine-induced microtubule depolymerization to a much greater extent than depletion of several other destabilizing MAPs. Using image-based assays, we determined that control cells retained 58% (+/-2%SEM) of microtubule polymer when after treatment with 2 microM colchicine for 1 hour, while cells depleted of KLP10A by RNAi retained 74% (+/-1%SEM). Likewise, overexpression of KLP10A-GFP results in increased susceptibility to microtubule depolymerization by colchicine.Our results demonstrate that the efficacy of microtubule destabilization by a pharmacological agent is dependent upon the cellular expression of a microtubule depolymerase. These findings suggest that expression levels of Kif2A, the human kinesin-13 family member, may be an attractive biomarker to assess the effectiveness of anti-microtubule chemotherapies. Knowledge of how MAP expression levels affect the action of anti-microtubule drugs may prove useful for evaluating possible modes of cancer treatment
    • …
    corecore